Diagnóstico de retinopatía diabética en imágenes digitales mediante máquinas de vectores de soporte
Ciencia y Mar número 87
PDF (Español (España))

Keywords

diabetic retinpathy
eye fundus image
support vector machine
blood vessels
microaneurysms

How to Cite

Delgado Orta, J. F., Clemente Hernández, A. A., Ochoa Somuano, J., & Men´éndez Ortíz, M. A. (2025). Diagnóstico de retinopatía diabética en imágenes digitales mediante máquinas de vectores de soporte. UNIVERSIDAD DEL MAR, 29(87), 89–100. https://doi.org/10.59673/cym.v29i87.73

Abstract

The diagnosis of diabetic retinopathy is a complex problem, addressed by both medicine and computer science, through techniques such as digital image processing and machine learning algorithms. Traditional diagnostic methods suggest the acquisition of fundus images of patients, using invasive procedures to highlight the features of the retina. In this regard, specialists identify three patterns that serve as a basis for studies on diabetic retinopathy: red blood cell deformation, the presence of exudates, and aneurysms. However, the difficulty in interpreting image information has posed a challenge for medical specialists and has hindered the development of reliable computational tools. This work presents an initial approach to addressing the problem, based on feature extraction from retinal images of both healthy individuals and patients with diabetic retinopathy, which are processed by a Support Vector Machine classifier with the aim of producing a tool capable of distinguishing between healthy patients and those with the condition. Experimental studies show an efficiency of 56% in diagnosis and 54% in the (a priori) detection of the condition. This represents an opportunity for improving the classifier, as well as the openness toward the implementation of alternative computational methods, in order to ensure high reliability of the tool for its application in the healthcare sector.

https://doi.org/10.59673/cym.v29i87.73
PDF (Español (España))

References

Al-Hazaimeh, O., A. Abu-Ein, N. Tahat, M. Al-Smadi & M. Al-Nawashi. 2022. Combining Artificial Intelligence and Image Processing for Diagnosing Diabetic Retinopathy in Retinal Fundus Images. International Journal of Online and Biomedical Engineering 18 (13): 131-151.

Data Science Team. 2020. Capítulo 2: SVM (Support Vector Machine) – Teoría. Consultado el 15 de enero de 2025: https://datascience.eu/es/matematica-y-estadistica/capitulo-2-svm-support-vector-machine-teoria/ .

Heidari, S., T. Babor, P. De Castro, S. Tort & M. Curno. 2018. Equidad según sexo y de género en la investigación: justificación de las guías SAGER y recomendaciones para su uso. Gaceta sanitaria 33 (2): 203-210.

IMSS. 2023. Protocolo de atención integral. Retinopatía diabética. Consultado el 10 de febrero de 2025. Disponible en: https://www.imss.gob.mx/sites/all/statics/profesionalesSalud/investigacionSalud/historico/programas/16-pai-retinopatia-diabetica.pdf

INEGI. 2021a. Estadísticas a propósito del día mundial de la diabetes. Consultado el 2 de febrero de 2025. Disponible en: https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2021/EAP_Diabetes2021.pdf.

INEGI. 2021b. Estadísticas a propósito de las personas ocupadas como médicos. Consultado el 4 de febrero de 2025. Disponible en: https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2021/EAP_Medico2021.docx.

Kaggle Aptos. 2019. Aptos - 2019 Blindness Detection. Consultado el 22 de enero de 2025. Disponible en: https://www.kaggle.com/datasets/mariaherrerot/aptos2019 .

Malhi, A. 2023. Detección y clasificación de la retinopatía diabética mediante imágenes digitales de la retina. Revista internacional de aplicaciones y robótica inteligente: 1-34.

Oh, K., H. Min-Kang, D. Leem, H. Lee, K. Yul-Seo & S. Yoon. 2021. Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images. Scientific reports 11: 1-9.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos & D. Cournapeau. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12: 2825-2830.

Raj S, B., L. Gibson, G. Chinnadurai, J. Vijay, V. Janakiraman & P. Anand. 2023. Support vector machine for image classification. Journal of the Asiatic Society of Mumbai 97 (4): 1-10.

Resnikoff, S., V. Lansigh, L. Washburn, W. Felch, T. Gauthier, H. Taylor, K. Eckert, D. Parke & P. Wiedemann. 2020. Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): will we meet the needs?. Br J Ophthalmol 104 (4): 588-592.

Sandoval, J. L. 2020. Proyección en el sector salud 2018-2024, análisis y consecuencias. Revista médica del Instituto Mexicano del Seguro Social 58 (2): 80-83.

Stella Mary, M. C. V., E. B. Rajsingh & G. R. Naik. 2016. Retinal Fundus Image Analysis for Diagnosis of Glaucoma: A Comprehensive Survey. IEEE 4: 4327-4354. DOI: 10.1109/ACCESS.2016.2596761.

Sahlsten, J., J. Jaskari, J. Kivinen, L. Turunen, E. Jaanio, K. Hietala & K. Kaski. 2019. Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading. Scientific reports 9: 1-11.

Uppamma, P., S. Bhattacharya & O. Geman. 2023. Deep Learning and Medical Image Processing Techniques for Diabetic Retinopathy: A survey of Applications, Challenges and Future Trends. Journal of Healthcare Engineering 1-18.

Wisaeng, K., N. Hiransakolwong, & E. Pothiruk. 2012. Automatic Detection of Exudates in Diabetic Retinopathy Images. Journal of Computer Science 8 (8): 1304-1313.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.